Passive End-to-End Packet Loss Estimation for Grid Traffic Monitoring

Antonis Papadogiannakis, Alexandros Kapravelos, Michalis Polychronakis, Evangelos P. Markatos
Institute of Computer Science (ICS)
Foundation for Research and Technology Hellas (FORTH)

Augusto Ciuffoletti
INFN - CNAF
Roadmap

• Introduction
• Passive Packet Loss Measurement Characteristics
• Methodology
• Integration within a Network Monitoring Service
• Experimental Evaluation
• Conclusions
Why to Measure Packet Loss?

- Accurate network monitoring is vital for Grids
 - Resource allocation
 - Scheduling decisions
 - Performance debugging

- Packet loss is an important performance metric
 - Identify poor network conditions
 - Highly affects the TCP throughput and the overall end-to-end data transfer quality
Existing Measurement Tools

• Most existing tools for packet loss estimation use active probes
 – ping, zing, badabing, sting
 – Incur network overhead due to the injected packets

• Existing passive monitoring techniques are based on TCP’s loss recovery algorithms

• A passive monitoring tool for packet loss estimation at the IP layer is still missing
Passive Packet Loss Measurement Characteristics (1/2)

- Non-intrusive
 - It does not inject any probe packets
- **Real-time** measurement of the **actual** loss ratio
- **Scalability**
 - Measure end-to-end packet loss between many different domains
- **Per-application** measurement
 - Differentiated services or rate limiting may result to different loss ratios in the same path
- **IP-level** measurement
• Limitations:
 – Requires two passive monitors at the ends of the measured path
 – Presence of real traffic in the path

• Can be used as complementary to existing active probing techniques
Our Approach

- Based on distributed passive network monitoring
- Two passive monitors at the two ends
- Send periodically information to a central application that computes the loss ratio
A Naive Algorithm

- Count the number of packets at both ends
- The application periodically subtracts the number of packets received from the number of packets that were actually sent

- Major drawback: inaccuracy
 - We cannot accurately synchronize the monitoring points to count the same window of packets
 - Packets in transit are not counted
• Measure the packet loss in each flow separately
• A flow is defined as a set of IP packets with the same 5-tuple:
 – Protocol
 – Source and destination IP address
 – Source and destination port (for UDP and TCP)
• An expired flow is a flow with no arriving packets for a specified timeout (e.g. 60 seconds)
• Expired flow is well defined: we know the first (e.g. TCP SYN) and the last (e.g. TCP FIN) packet of the flow
• Each monitoring sensor sends periodically statistical information about the expired flows it has seen
• The monitoring application correlates the statistics regarding the same expired flow
• The difference of the number of packers gives an accurate estimation of the loss ratio for this flow
In each measurement point we run two daemons:

- **mapid**: A passive monitoring daemon that identifies and collect the expired flows
- **mapicommd**: A communication daemon that accepts monitoring requests and sends back the results

Using a distributed monitoring API (DiMAPI) we manipulate multiple monitoring sensors from the same application
Identification of Expired Flows

• Every new packet is associated with exactly one active flow record
• Hashtable for fast lookup
• Linked list with temporal order for immediately identifying the expired flows

A Flow record

<table>
<thead>
<tr>
<th>Source IP address</th>
<th>Destination IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source port</td>
<td>Destination port</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>Timestamp of first packet</td>
<td>Timestamp of last packet</td>
</tr>
<tr>
<td>Packet counter</td>
<td>Byte counter</td>
</tr>
</tbody>
</table>
Distributed Sensor Management

- The monitoring application communicates with many distributed sensors
- It periodically collects the expired flows from them
- Then, it correlates the pairs of statistics regarding the same flow
- For every matched pair, it computes the packet and byte loss ratios
- It reports both the total loss ratio, and loss ratio per every individual flow
• **Network Monitoring Element (NME)**
 – Offers an interface for measurement requests
 – Plug-in based interface for publishing measurements
 – Access a database that contains information about Grid resources and other NME

• **Network Monitoring session for packet loss ratio measurement**
 – Identify the source and destination domains
 – Type of service that the measurement corresponds
 – Time period of the measurement (historical, most recent, one-shot, or periodic)
Integration within a Network Monitoring Service (2/2)
Experimental Evaluation

- Packet Loss Measurement Accuracy
- Experiences with Grid Network Traffic
Artificially generated packet loss

Before artificial packet loss

Sender

Gateway

After artificial packet loss

Receiver
Packet Loss Measurement Accuracy (1/2)

<table>
<thead>
<tr>
<th>Artificially Generated Loss (%)</th>
<th>Estimated Loss (min/avg/max %)</th>
<th>Measurement Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00/0.002/0.01</td>
<td>0.002</td>
</tr>
<tr>
<td>1</td>
<td>0.91/0.98/1.06</td>
<td>0.020</td>
</tr>
<tr>
<td>5</td>
<td>4.80/5.014/5.13</td>
<td>0.014</td>
</tr>
<tr>
<td>10</td>
<td>9.86/10.09/10.18</td>
<td>0.090</td>
</tr>
<tr>
<td>25</td>
<td>22.24/24.74/25.32</td>
<td>0.260</td>
</tr>
</tbody>
</table>

- Packet loss measured while generating 10 parallel UDP flows over a 2 hour period
- Accurate results, very close to the generated loss
- Small aberrations due to the probabilistic nature of loss generation
Packet Loss Measurement Accuracy (2/2)

<table>
<thead>
<tr>
<th>Artificially Generated Loss (%)</th>
<th>Estimated Loss (min/avg/max %)</th>
<th>Measurement Error (%)</th>
<th>Served Requests</th>
<th>Rate (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00/0.06/0.17</td>
<td>0.060</td>
<td>2944</td>
<td>38.75</td>
</tr>
<tr>
<td>1</td>
<td>1.02/1.078/1.16</td>
<td>0.078</td>
<td>1666</td>
<td>22.23</td>
</tr>
<tr>
<td>5</td>
<td>4.92/5.07/5.23</td>
<td>0.070</td>
<td>1058</td>
<td>14.11</td>
</tr>
<tr>
<td>10</td>
<td>9.86/10.086/10.12</td>
<td>0.086</td>
<td>290</td>
<td>3.90</td>
</tr>
<tr>
<td>25</td>
<td>24.89/25.235/25.50</td>
<td>0.235</td>
<td>0</td>
<td>0.26</td>
</tr>
</tbody>
</table>

- Packet loss measured while performing normal HTTP requests
- Packet loss ratio significantly affects the number of completed requests
- TCP throughput drops dramatically from 38.75 Mbit/s to 0.26 Mbit/s
Experiences with Grid Network Traffic (1/2)

- Deployment of the technique to an operational Grid network path
- Running for a 24-hour period with measurements every 30 seconds
- Generating more traffic using HTTP and GridFTP
Experiences with Grid Network Traffic (2/2)

- Bursts of HTTP and FTP transfers result in higher loss rates.
- The 83% of the 30-seconds intervals indicate 0% loss ratio (89% and 87% for HTTP and FTP).
- 0.09% overall loss ratio over the 24-hour period for total traffic, 0.13% for HTTP-only and 0.19% for FTP-only traffic.
Conclusions

• A novel **passive** monitoring technique for packet loss estimation between different Grid domains

• **Scalable, non-intrusive and real time**

• Can be **complementary** to active monitoring tools

• Based on tracking the **expired flows** at each monitoring sensor

• Uses a **distributed** infrastructure for gathering and correlating the results

• **Validated** using realistic traffic
Thanks!

Any questions?